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The notion of partial Pade approximant is generalized to that of general order
multivariate partial Newton-Pade approximant. Previously introduced multivariate
Pade-type approximants are recaptured as special cases so that it is a true and
unifying generalization. The last section contains numerical results for the bivariate
Beta function. C 1993 AcademIc Press. Inc

I. THE MULTIVARIATE NEWTON-PADE ApPROXIMATION PROBLEM

We shall often restrict our description to the bivariate case for the sake
of notational simplicity although we use the term multivariate. Let a
bivariate function j(x, y) be known in the points (x" J» E (:2 with (i, j) E f,
a finite subset of N 2 playing the role of index set. If none of the points in
{(Xi' J)}Ii.JIEI coincide then we are dealing with a rational interpolation
problem and the values in LId 1i.}1 E I are function values. If all the inter­
polation points coincide then the problem is one of Pade approximation
and it is well known that the given data are not function values but Taylor
coefficients. If some of the points coincide and some do not then the
problem is of a mixed type and it is called a rational Hermite interpolation
problem or a Newton~Pade approximation problem. In [8] is indicated
how one should interpret the data lij: some of them are partial derivatives
and some of them are function values. In the sequel of the text we shall
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302 ABOUIR AND CUYT

distinguish, when necessary, between the Pade approximation case where
all the interpolation points coincide and the Newton-Pade approximation
case where this is not so.

With our data points (Xi' y) we construct the polynomial basis
functions

;-1 )-1

Bij(X' y) = f1 (x - xd L (y - YI)'
k~O I~O

The problem of interpolating the data fij by a bivariate rational function
was formulated in [8] as follows. Choose finite subsets N (from
"Numerator") and D (from "Denominator") of N2 with N c I and compute
bivariate polynomials

such that

p(X, y) = L aijBij(x, y),
(i,j)E N

q(X, y) = I bijBijC\:, y),
Ii.j) ED

#N=n+ 1

#D=m+1

(ta)

(fq-p)(Xi , y)=O, (i, j) E I, #I=n+m+ 1. (l b)

If q(x;, y) # 0 then this last condition implies that

p
f(x;, )) = - (x" Yi)'

q
(i, j) E I.

If some of the Xi and y) coincide then also higher partial derivatives of
(fq - p) will cancel at (Xi' y) and higher partial derivatives of f will agree
with those of p/q at (Xi' Yj) [8]. The following two conditions for the
polynomials given in (l a) are sufficient to satisfy (l b), both in the Pade
and the Newton-Pade approximation case [8],

(fq - p)(x, y) = I dijBij(.\:' y)
li.j)E 1\j2\/

I satisfies the inclusion property,

(2a)

(2b)

where the series development (2a) is still formal and where (2b) means that
when a point (i, j) belongs to I, all the points in the rectangle emanating
from the origin with (i, j) as its furthermost corner belong to I. How this
can be achieved in a lot of situations is explained in [8]. From now on we
denote a rational function (p/q)(x, y) satisfying (I) or (2) for data coming
from the function f( x, y) by [N/D l{.
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By the set N * D we denote the index set that results from the multiplica­
tion of a polynomial indexed by N with a polynomial indexed by D. Since
we work with the polynomial basis functions Bu(x, y) instead of xiyJ, we
must keep in mind that

k I

Bu(x, y) Bkl(X, y) = L: I A/ivBi+/i.)+ .,(x, y).
J1=O v~o

So

N * D = U U ([i, i + k] x [j, j + I] n N 2)
U.))eN (k./)ED

=:> { (i + k, j + /) I (i, j) E N, (k, I) ED}.

In case all the interpolation points (Xi' }j) coincide, for example, and for
simplicity in (0,0), then

N * D = {(i + k, j + I) I (i, j) E N, (k, I) ED}.

If moreover the sets Nand D satisfy the inclusion property, then

NuDcN* D.

2. GENERAL ORDER MULTIVARIATE PARTIAL NEWTON-PADl~ ApPROXIMANTS

The notion of partial Pade approximant was introduced by Brezinski
[3] for univariate functions f(x): some of the Pade approximation condi­
tions are dropped due to the knowledge of some poles or zeros of f(x). Let
the polynomials Vk(X) and WI (x) respectively represent k zeros and I poles
of f The partial Pade approximation problem for f consists in finding
polynomials p(x) and q(x), respectively, of degree nand m and satisfying

(3)

The rational function (pvd/(qw/) is then called the partial Pade approxi­
mant to f of order (n + k, m + I). It is easy to see that, if vk(O) of 0, the
rational function p/q is the Pade approximant of order (n, m) to fwdvk[3].
We generalize this concept as follows.

Let the polynomials Vk(x, y) and WI (x, y) respectively represent some
knowledge about the zeros and poles of f(x, y),

Vk(x, y) = L vUBij(x, y)
U.j)E v

#V=k+l
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W/(x, y) = L wijBij(x, y)
(i,i)E W

# W=/+ l.

Consider the following approximation problem, Let the finite subset
Ie f"\,)2 index those data points (Xi' y) that will be used as interpolation
points. The knowledge of (x, y) in these interpolation points (Xi' Yj) can be
expressed by means of a formal Newton series development for f,

f(x, y) = L c;jBij(x, y)
(i,j)E t\,l2

where the bivariate divided differences with possible coalescence of coor­
dinates are computed as in [8]. To generalize (3) we look for polynomials

satisfying

P(X, y) = L aijBij(x, y)
(i.i)E N

Q(X, y) = L bIjBIj(x, y)
(i./) ED

N from "Numerator"

D from "Denominator"

UQW/- PVd(x, y) = I dIjBij(x, y).
(i. i) E ""\I

(4)

Which conditions have to be imposed on Nand D to find a nontrivial
solution for the unknowns aij and bij in (4)? Assuming that Vk(x;,}'j) # 0
we first study

where

(
f W ,) ,,-V (x, y) = L." cijBij(x, y).

k (i. i) E ""

The coefficients eii are given by

I W,[Xo, ..., XI][Yo, ..., Yu] f[x" ..., X;][Yu' ..., yJ
(I.U)E W

L »'ruf[x" ..., X;][Yu, .." Yi]
(t.U)E I'V

(5)
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I }

= I I 1'"V Vk [x,,, ..., X,][Yv' ... , yJ.
It=O \'=0
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If P/Q is a Newton-Pade approximant to (fWdVk)(x, y) then
(PVk)/(QW/) is a partial Newton-Pade approximant to f(x, y). Here a
Newton-Pade approximant P/Q is denoted by [NID]JWi/V, and we intro­
duce the notation {N, VID, W} { for a partial Newton-Pade approximant
(PVd/(QW/). From [8] we know that [NIDlF'/v, can be computed for

NcI

# (/\N) = # D - 1

I inclusion property.

Using known results for general order multivariate Newton-Pade
approximants, a partial Newton-Pade approximant {N, VID, W} { can
be expressed as a ratio of determinants involving the coefficients 1'ij from
the formal Newton series expansion (5) for (fW,IVd(x, y). Let us number
the indices in D by (do, eo), (d l , ed, ..., (dm, em) and the indices in I\N
by (hi' k 1 ), ... , (h m , k m ). If the rank of the coefficient matrix of the linear
conditions arising from (2a) [8] withfreplaced by (fWdVd, is maximal,
then Q(x, y) and P(x, y) are given by

Q(x, y)=

Bd(wo(x, y)

Cdoh,.eok,

Bdmem(x. YI

1'dmhl.emkl (6a)

P(x, y)=

L(i.))E N 1'dni.eojBij(x, y)

Cdohl.eok\

L(i,)1 Cdmi.emjB;,(x, y)

Cdmhi,emk.j . (6b)

The error formulas developed in [1] for general order multivariate
Newton-Pade approximants remain valid when applied to the function
fW,IVk • When calculating a partial Pade approximant instead of a partial
Newton-Pade approximant, we use a formal Taylor series development of
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(fWi/Vk)(x, y) and carry out the same computations as above. In this case
all the interpolation points coincide in one point. For special results about
general order partial Pade approximants we refer to the next section.

3. ALGEBRAIC PROPERTIES OF THE MULTIVARIATE

PARTIAL PADE ApPROXIMANT

It is well known that univariate Pade approximants satisfy a number
of covariance properties, such as reciprocal covariance, homographic
covariance, covariance for some transformations of the variable. These
covariance properties remain valid for univariate partial Pade
approximants, as was pointed out by Brezinski in [3]. In this section we
study the covariance properties of the multivariate partial Pade approxi­
mant. For the sake of notational simplicity we stick to the bivariate case.
Let the formal Taylor series development of f(x, y) be given by

f(x, y) = L: cijx),j
(i.}) E !'oJ'

with

Coo -# O.

Then the formal Taylor series development of g(x, y) = (l/f)(x, y) IS

defined by

g(x, y) = L: dijxiyj
U,j)E!'oJ 1

with

f(x, y) g(x, y) = I.

If the polynomial Vdx, y) contains information on the zeros of f, then
it also contains information on the poles of g and vice versa for W,(x, y).
If

UQW,-PVk)(x, y)= L dijxiyj
(i,ilE N1IJ

then after multiplication by - g(x, y), we obtain

(gPVk - QW,)(x, y) = L dijXiyj.
U,jl E N2\1



NEWTON-PADE APPROXIMANTS

From this we can conclude
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THEOREM 1. Let {N, V/D, W}{ be a general order multivariate partial
Pade approximant to fix, y) as defined above and let g(x, y) = (1//)(x, y).
Then

{N, V/D, W}{ {D, WIN, V}: = 1.

By multiplying the formal Taylor series expansion of fix, y) by a
constant complex number, we do not change its zeros or poles, It is easy
to verify

THEOREM 2. Let {N, V/D, W}{ be a general order multivariate partial
Pade approximant to fix, y) as defined above and let a#- O. Then

{N, V/D, W}jf=a{N, V/D, W}{

If we study the homographic function covariance of the multivariate par­
tial Pade approximant, we must disappoint the reader. By transforming the
function f into the function J= (af+ b )/(cf+ d), the rational approximant
under consideration transforms into

aPVk + bQW, (x, y) = L(ij)E N ~ijX)'i
cPVk +dQW, L(ij!Eij bijx'yl

which cannot necessarily be written in the form (PVk)/(QW t ) with P!Q =

[N/Dlrvlivk
.

Let us now study some changes in the variables. We define

a#- 0, b #- 0

i\(x, y) = Vk(ax, by)

W,(x, y)= W,(ax, by)

J(x, y) = f(ax, by).

Since

UQW,- PVd(x, y) = L dij:'<v i

(i.iIE f<,j2\J

implies

UQW,- PVd(ax, by) = L d;jX'yi
(i,1I E f<,j2\f

it is easy to conclude
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THEOREM 3. Let {N, VI D, W} { be a general order multivariate partial
Pade approximant to f(x, y) as defined above and let a#- 0, b #-°with J, W,
and C\ as defined above. Then

{N, VID, W}~= {N, V/D, W}f(ax, by).

Another change is the translation of the coefficients in the formal power
series, in other words a multiplication of f(x, y) by x'y'. We introduce the
notations

IV = N + {(s, t)} = {(i + s,) + t) I (i,)) E N}

i=I+{(s,t)}= U ([O,k+s]x[O,I+t]nr~n.
th.1l E J

Here overlining means making the set satisfy the inclusion property,
in other words taking a kind of closure, namely filling the "holes" when
looking at the set in N 2. If N c I then also IV c lOne can verify

THEOREM 4. Let {N, VID, WH be a general order multivariate partial
Pade approximant to f(x, y) as defined above and let IV and j be defined as
above. Then

{IV, V/D, W}rl"/=x'y'{N, VID, W}{

The most important change of variable is the one involved in the
homographic variable covariance of the multivariate partial Pade
approximant.

THEOREM 5. Let {N, VID, W} { be a general order multivariate partial
Pade approximant to f(x, y) as defined above with N = D = ([0, i M ] X

[0, )M]) n f\:,j2 and let

_ ax+b
x=--,

ex+d

_ a'y+ b'

y= e'y+d'

C\(x, y)=(ex+d)hM (e'y+d')'1f Vh(:t',]i)

W,(x, y) = (ex + dt" (e'y + d')/'1 W,(.\', ~v)

](x, y)=f(.\', ji)

ad - be #-0, a'd' - b'e' #-0

with V=W=([O,k M]x[0,IM])nN 2
. Then

{N, V/D, W}~(x, y)= {N, V/D, W}{(.x, n.
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Proof For ad - be i= 0,

_i:=~(ax+h) it (_I)i (~x)

= ~+ x (~- ~~) + .. ,

b x=-+- (ad-be) + .,.
d d 2
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represents a formal power series in x and analogously for )'. Equation (4)
combined with these formal power series expansions for .x and .y results in

= (ex + d)kM(C'y + d')/M L dij.i:T'/
1i•.I)E ry2,J

L dijx'y'.
li.j)E ",2\.1

The fact that

P(~i:, .y)

Q( .i:, .v)

completes the proof. I

LIi..I)E N a,/.i:'.yI

Lli. i)E N bijiT'

(ex + dY"(C'J' + d')/M LIi./)E M aijiiy/

(ex + dVM(e'y + d'V" LIi.J!E M hijiiy/

L(r,."IE /\/ iirsxrJl'"
"" b" .... r".\·
~(r,sIE,V r.\·~'\-'

Last but not least we have the consistency property. If we are given
an irreducible rational function f(x, y) right from the start, do we come
across it when calculating the appropriate general order Newton-Pade
approximant. By this we mean that for

(fQ - P)(x, y) = L diiBij(x, y)
(i,j)E N1".,1
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with P(x, y) and Q(x, y) defined by (la), we want to find

(Ph - gQ)(x, y) = o.
It is clear that this is the case if the general order multivariate Newton­

Pade approximation problem [NjDl{ has a unique solution, because then
both PjQ and gjh satisfy the approximation conditions (4). If the solution
is nonunique we can get in trouble because of the nonunicity of the
irreducible form of the Newton-Pade approximant. A solution of the form

IX + IXX + (1 - IX) Y

l+x+y

has three different irreducible forms, namely

y
IX = 0.0:

l+x+y

IX = 0.5: 0.5

IX = 1.0:
l+x

l+x+y

These irreducible forms cannot all together coincide with gjh. In general we
can only say that

(Ph-gQ)(x, y)= L eijBij(x, y).
li.j)E N. D\I

4. GENERAL ORDER MULTIVARIATE NEWTON-PAm', TYPE ApPROXIMANTS

Newton-Pade type approximants are a special case of partial Newton­
Pade approximants: the denominator polynomial is completely fixed and
no factor of the numerator polynomial is prechosen. In the univariate case
this means putting OW, = m and oVk = 0 in (3), implying that op = nand
oq = o. The Newton-Pade type approximant is then given by

J!..... (x) = L/=o w) L7=o![x), ... , x;] B;(x)

J,V", L;'=o wJB)(x)

satisfying

w

(fw",-p)(x)= L d;B;(x).
1=11+ 1
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Convergence results for Newton-Pade approximants can be found in
[9, 10]. From (4) we find that its multivariate analogon is

~(X, v)=L(k./lEwH'k/L(,.;IENCh/;BI/(x, y)
W",' L(k./)E w H'k/Bk/(x, y)

with cw;=f[xb ... , X;][YI' ..., yJ and satisfying

(fW", - P)(x, y) = L di!B,,(x, y).
Ii./I E f\J'./1i

For general order multivariate Pade type approximants this last formula
reduces to

~ (x ,,) = L(k./IE W !l'kI L(i.t!E.!Ii Ci - k.;·· IX)'I
W ·,-, '" kl

", L...(kJIE IY H'kl X Y

with Ci-k., ,=(ei-k+! 'f/ex! key/I)(O,O). A convergence theorem for
multivariate Pade-type approximants will be given in [6]. We shall now
rediscover some independently developed notions of multivariate Newton­
Pade type or multivariate Pade type approximants as special cases of our
general order rational approximants,

In [2] Brezinski introduces multivariate Pade type approximants with a
denominator polynomial of the form

"11 1112

W",(.x, y) = L I Wi}''"'.V'
,~O ;=0

satisfying

(fW", - P)(x, y) =
(i,j)E N '" (N + {(O,m2Il J u (N + {(mj,OJ: '" N

which is equivalent to (4) with I=N=([O,m,-1]x[O,/1l2-I])nN2,

Here

# W = (m I + I )( m 2 + I ).

In [12] Kida introduces multivariate Pade type approximants using
multivariate homogeneous expressions. Their construction is similar to the
construction of multivariate Pade approximants by Cuyt in [5]. He
chooses

\'+m

W",(x, y) = :L wi;x'y'
i +.1= s

s+n

P(x, y) = L ai;xiy!
;+.1=.\'

640.723·6
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with the multivariate Pade type approximant satisfying

UWm - P)(x, y) =
i+j=s+n+ I

So 1= {(i, j) I 0 ~ i + j ~ S+ 11}. The integer s indicates a shift of the degrees
of W m and P over s. Instead of the index sets Wand N being triangular,
they have a band structure, resulting from shifting the triangle away from
the origin by s.

In [15,16J Sablonniere chooses In points z(I'=(z\li,z~I)), ... ,zlm)=
(Z\"'I, Z~"I) in C~ to construct

m

W ( V \,)= TI (1_~It)X'_~It)\,)
rn .'\., . ... I - - 2 .'

,~ I

= I lI'ijx'yi
i+j = 0

while the numerator of the multivariate Pade type approximant is of the
form

m I

P(x, y) = I Gux'yi.
i+/=O

Hence

# W = (m + 1)(m + 2)/2

#N=m(m+ 1)/2.

Finally the approximation conditions are given by

UW", - P)(x, y) = I di/yl.
i+j=m

Recently Muhlbach introduced a multivariate Newton-Pade type approxi­
mant which he called in [14] a multivariate rational interpolant with
prescribed poles. He fixes m 1+ 1 finite noncoinciding points at, I and m~ + 1
finite noncoinciding points ai.~ in C to construct

nJl m2

W",(x, y) = TI (x - ai, Il TI (y - ai.~)·
,~() i~()

The multivariate Newton-Pade type approximant under consideration will
be computed in its partial fraction decomposition
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w= ([0, m l ] x [0, ml])n f\jl

I=N= ([0, mj-l] x [0, m2- 1])n f\jl.
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The above results can be generalised for multiple prescribed poles, where
some of the ai, I or an coincide.

5. NUMERICAL ILLUSTRATION

To illustrate the concept of multivariate partial Pade approximant we
shall compare it numerically with the general order multivariate Pade
approximant. It is clear that the partial approximant can only be a power­
ful tool if the polynomials W{(.x, y) and Vk(x, y) contain accurate informa­
tion on the zeros and poles of the multivariate function responsible for the
interpolation data. The bivariate Beta function B(x, y) will serve as a
concrete example here because many numerical results on other types of
approximants for this function can be found in the literature [4, 5, 7, 11, 13].
It is defined by

rex) r(y)
B(x, y)= r(x+y) ,

where F is the Gamma function. Singularities occur at x = -k and y = -k,
(k=O, 1,2, ... ) and zeros at y= -x-k (k=O, 1,2, ... ). By means of the
recurrence formulas

r(x+ 1)=xr(x)

F( y + 1) = y r( y )

for the Gamma function, we can write

1 + (x-l)(y-l)f(x, y)
B(x, .v) = .

xy

We shall now compute approximants R(x, y) for f(x, y) and compare the
exact value B(u i , vj ) with the expression

U,'V/

in a number of points (u i , v) close to zeros and poles simulated by the
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partial Pade approximant. For the partial approximant the supplementary
information on the poles is given by

W,(x, y)=(1 +xJ(1 +y)

W = {( 0, 0), (l, 0), (0, I), ( I, I)}

and that on the zeros by

V 2(x, y)= 1+x+y

V = ((0,0), (1,0), (0, I)}.

Of course, when comparing partial approximants with full approximants
this extra information on the zeros and poles will be accounted for. For the
general order Pade approximants in total 36 pieces of information shall be
used, namely the Taylor coefficients ('i/ of a series development for f(x, y)
with (i, j) in

1= {(i,j) I 0~i~5,O~j~5}.

For the numerator and denominator of the general order Pade approxi­
mant we take

N = [(i, j) I 0 ~ i + j ~ 5} u {(3, 3)}

D= {(i,jl I0~i+j~4}.

For the numerator and denominator of the partial Pade approximant we
keep in mind that already some coefficients are fixed by the choice of W,
and V 2 and hence we take

N= {(i,jl IO~i+j~5} u {(3, 3)}\{(5,0), (0, 5)}

D={(i,j)10~i+j~3}u((3,1),(3, I)}.

The unknown coefficients in the partial Pade approximant can be fixed by
imposing 36 - k - 1= 36 - 2 - 3 = 31 approximation conditions coming
from

1= {( i, j) I 0 ~ i ~ 4, 0 ~ j ~ 4 } u { { (5, 0), (5, I I, (5, 2), (2, 5), ( I, 5), (0, 5) }.

Note that our approximants are chosen symmetric in x and y because we
are dealing with a symmetric function. Table I displays some numerical
results that are typical throughout the region [-I, I] x [-1, I]. We did
not pick particular numbers that served our purpose. The difficulty with
the bivariate Beta function is that it is very steep near its zeros and
singularities. This forces us to go quite close to illustrate the advantage
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TABLE 1

R(u" 1)= [NiD]; R(u,. V,) = {IV, V/D. W'};
lu" r,1 E"" E""I Blu,. r,)14 11

(-0.9875. -0.2) 56. 110. 91.
(-0.9925. -0.2) 75.4 196. 155.
(-0.9975, -0.2) 112. 603. 475.

f -0.5975, -0.4) -0.0334 -0.0346 -0.0343
(-0.6, -0.4) 0.0009 O. O.

( - 0.6025. - 0.4) 0.0355 0.0349 0.0345

(-0.9800, -0.25) 42.5 68.3 58.3
(-0.9875, -0.25) 59.0 113. 95.8
(-0.9950, -0.25) 93.4 290. 246.

(-0.2. -0.79901 -0.041 -0.036 -0.033
1-0.8, -0.1990) -0.049 -0.039 -0.034
(-0.85. -0.1491 -0.120 -0.076 -0.055

of the partial Newton-Pade approximants, The displayed approximants
were computed using the E-algorithm for multivariate Newton-Pade
approximants [4].
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